Survey of Catalysts for Oxidation of Mercury in Flue Gas Albert A. Presto and Evan J. Granite National Energy Technology Laboratory DOE/NETL Mercury Control Technology Conference Pittsburgh, PA December 2006 ## **Mercury in Flue Gas** - Elemental mercury (Hg⁰) - Emitted from high-temperature coal combustion - Insoluble in water - Can be removed with activated carbon injection (ACI) - Oxidized mercury (Hg²⁺) - Typically assume HgCl₂ - Water soluble, sorbs to AC - Particle-bound mercury (Hg(p)) - Both Hg⁰ and Hg²⁺ - Typically a small fraction of total mercury - Ratio of Hg⁰/Hg²⁺ depends on a number of factors (coal-Cl, LOI, time-temperature history, etc.) # **Mercury Removal Technologies** #### Activated carbon injection (ACI) - Inefficient mixing/contact: Requires C/Hg mass ratios>1000:1 - AC is a general sorbent - Potentially makes fly ash unusable as cement additive - Low cost: AC costs < \$1/lb</p> - Current 'best bet' #### Catalytic mercury oxidation - Use catalyst to convert Hg⁰ to Hg²⁺ - Removal of Hg²⁺ with wet FGD (>90% efficient) - Proposed catalysts: SCR catalysts, carbon-based materials, metals and metal oxides There is no "magic bullet" – mercury control will involve multiple technologies/products #### Major Uncertainty: Reaction Mechanism - Assumption: Chlorine (HCl or Cl₂) is the oxidizer for mercury in flue gas - Hg⁰(g) + HCl(g)/Cl₂(g) is too slow to explain observed extents of oxidation - -Hg⁰(g) + Cl(g) is fast, but Cl(g) concentrations are low - Cl₂ could be catalytically generated from HCI (Deacon process), but Cl₂ concentrations are generally low - Likely oxidation mechanism is heterogeneous ## **Heterogeneous Reaction Mechanisms** Langmuir-Hinshelwood $$A(g) \leftrightarrow A(ads)$$ $B(g) \leftrightarrow B(ads)$ $A(ads) + B(ads) \xrightarrow{k_{surf}} AB(ads)$ $AB(ads) \rightarrow AB(g)$ - Reaction between adsorbed Hg⁰ and HCI - Both Hg⁰ and HCl can adsorb to carbon sorbents ## **Heterogeneous Reaction Mechanisms** #### Eley-Rideal - Reaction between an adsorbed species and a gasphase species - -Either Hg⁰ or HCl can be the adsorbed species $$A(g) \leftrightarrow A(ads)$$ $$A(ads) + B(g) \xrightarrow{k} AB(g)$$ ## **Heterogeneous Reaction Mechanisms** #### Mars-Maessen - Hg⁰ reacts with lattice oxidant (O or Cl) - Oxidant is replenished from gas-phase $$A(g) \leftrightarrow A(ads)$$ $$A(ads) + M_x O_y \rightarrow AO(ads) + M_x O_{y-1}$$ $$M_x O_{y-1} + \frac{1}{2}O_2 \rightarrow M_x O_y$$ $$AO(ads) \rightarrow AO(g)$$ - This mechanism may explain effectiveness of halogenated sorbents - Lattice halide could serve as the oxidant ## **Other Major Questions** - Is Hg⁰ physically or chemically adsorbed to sorbent surfaces? - What are the intermediate products, if any? - Is the final oxidized species HgCl₂? - What are the effects of co-reactants such as SO₂ and NO_x? Big picture: We lack predictive ability! ## **SCR Catalysts** - Used for reduction of NO to N₂ - $-V_2O_5/WO_3$ on TiO_2 support - $-T > 300^{\circ} C$ # **SCR Catalysts: Reaction** #### Mechanism could be: - Langmuir-Hinshelwood - Eley-Rideal - Either HCl or Hg⁰ adsorbed to surface #### Likely competitive adsorption between NH₃ and HCl and/or Hg⁰ - Size of NH₃-rich and NH₃-poor zones determined by NH₃/NO ratio - Increasing NH₃/NO reduces the extent of Hg⁰ oxidation, and may force Hg⁰ from the surface # **SCR Catalysts: Results** #### Laboratory scale - ->95% oxidation of Hg⁰ in simulated flue gas - Slipstream of subbituminous/bituminous flue gas - 60-80% oxidation over 6 days - Pilot scale test (bituminous coal) - SCR was placed downstream of ESP (T ~ 150° C) - Efficiency fell from 70% to 30% during 10-month test - Ash plugging may have been a problem #### Full scale test - Essentially no oxidation for lignite flue gas - Ash plugged/blocked catalyst and limited both NO and Hg⁰ conversion # **SCR Catalysts: Outlook** - Installing SCR for NO_x reduction may provide co-benefit Hg⁰ oxidation - Greatest benefit for bituminous coals (high CI) - Long-term conversion is uncertain - Installing SCR catalyst specifically for Hg⁰ oxidation may not be economical - Other materials are cheaper and give higher conversion to Hg²⁺ # **Carbon-based Catalysts** - Carbon catalysts, activated carbons, fly ash, or ThiefTM carbon - Mercury adsorbs to carbon sites on fly ash particles - Hg(ads) is oxidized (chemisorbed) on carbon surfaces - Correlation between extent of oxidation and UBC in ash - Increased oxidation across baghouses # **Carbon-based Catalysts: Reaction** - HCl adsorbs to carbon sorbents - Langmuir-Hinshelwood mechanism - Adsorbed Hg⁰ and HCl - Eley-Rideal mechanism - Either HCl or Hg⁰ as adsorbed species - NO appears to inhibit oxidation - Role of SO₂ is unclear - -SO₂ can oxidize to H₂SO₄ on activated carbon # **Carbon-based Catalysts: Results** - Carbon catalyst maintained >80% oxidation (pilot-scale) for two months - Effectiveness reduced by extended exposure to fly ash #### Fly ash Performance depends on source – high (>50%) conversion for bituminous ash, very low (<10%) for unpromoted lignite ash #### Thief carbon - Achieved >70% oxidation in short-term tests - No long-term tests # **Carbon-based Catalysts: Outlook** - Fly ash and Thief carbon may be economical - Inexpensive - Can be promoted with halogens - Regenerable - Commercial carbon catalysts have shown good performance in pilot-scale tests - These materials may be more cost-effective than metal or metal oxide catalysts # **Metal and Metal Oxide Catalysts** - Iron/Iron oxides - Noble metals Cu, Pd, Au, Ag - Ir and Ir/Pt - MnO_2 # **Metal catalysts: Iron** - Fe and Fe/Cr catalysts showed poor conversion - Studies suggest that stainless steel may catalyze oxidation - Fe₂O₃ may enhance Hg⁰ oxidation on fly ash particles - Fe₂O₃ in model fly ash (fixed bed) catalyzed oxidation - $-\alpha$ Fe₂O₃ injected into flue gas had little catalytic ability - -γ- Fe₂O₃ coated onto fabric filters enhanced oxidation - Catalytic effect of Fe₂O₃ in fly ash may result from mix of species ## **Metal Catalysts: Noble Metals** #### Palladium - Most exhaustively tested noble metal catalyst - Pilot-scale test using Pd deposited onto commercial forms - ->80% oxidation for ten months - Sonic horns required to remove ash particles - Preliminary economics - 62% savings over ACI for 80% Hg removal - 9% savings over ACI for 90% Hg removal ## **Metal Catalysts: Noble Metals** #### Expect similar performance for Cu, Au, Ag as Pd - Lack of mechanistic understanding is a hindrance! - Example: Au catalyst - Meischen and Van Pelt: Hg⁰ + HCl - Zhao et al: Hg⁰ + Cl₂; HCl reduced oxidation relative to Cl₂ alone #### Cu is an interesting case - CuO in a model fly ash oxidized >90% of Hg⁰ from simulated flue gas - CuCl can catalyze Hg⁰ even without HCl (Mars-Maessen reaction?) # **Metal Catalysts: Outlook** - Noble metals (Pd) have promise - Possibly more cost-effective than ACI/COHPAC - Catalyst loading as little as 1 wt.% - More work is required to better understand reaction dynamics #### **Recommendations for Future Research** - Understanding reaction mechanism and kinetics is paramount! - Predictive ability - Requires lab-scale tests using simulated flue gas - Downside: Differences between simulated and real flue gas - Novel catalysts and catalyst supports - Cost effectiveness, regeneration #### **Acknowledgments** ORISE, IEP Program